Conducting DNA nanowire/nanodevice development

DNA is one of the most promising one-dimensional nanomaterials because of its adjustable length and self-assembly properties. It may be useful as a one-dimensional nanowire or nanodevice in electronic applications; however, it is of great interest to reveal the electrical conduction mechanism of DNA. The conductivity of DNA increases dramatically when it is doped with Ni ions to form Ni-DNA (M-DNA). Our studies demonstrate that Ni-DNA is a conducting nanowire. The the charges in Ni2+-doped DNA are transported through the Ni2+-mediated p-p stacking corridor.

1. Biophysical J. 100, 1042-1048;2. Chinese J. Physics 47, 740-747;3. Nanotechnology19, 355703.

Native bio-nanoparticle drug delivery system development

For hydrophobic drug delivery, it is important to consider the physicochemical properties of macromolecules, cell uptake, and the usage of the delivery system. A good hydrophobic drug delivery system (DDS) with native-like physicochemical properties and good cell permeability is highly desired. Modified natural transporter/protein would be an excellent candidate for DDS.

Low-density lipoprotein (LDL) is a native nanoparticle and its size is approximately 18–25 nm. Plasma LDL can be cleared from circulation through LDL receptor (LDLR)-mediated endocytosis. This allows for the transfer of LDL into endosomes, where the pH drops, causing LDL to dissociate from the receptor. The receptor is then recycled to the surface of the cell, while LDL is transferred into the lysosomes for degradation. This pathway could be useful for drug delivery, and may then be directed toward tumors expressing LDLR. It has been demonstrated that LDLR is overexpressed in various human cancer cell lines. A LDL-based hydrophobic/amphiphilic DDS can be internalized and degraded by regular cell metabolism, and these properties can be used in targeted therapies for cancer. In our previous study indicated that the reconstituted apoB lipoparticle (rABL) is an ideal carrier for transporting hydrophobic and amphiphilic compounds.

ACS Appl. Mater. Interfaces. 5, 7509-7516